
Solving NP hard Problems using Genetic Algorithm
Gaurang Panchal & Devyani Panchal 

U & P U Patel Department of Computer Engineering  
Chandubhai S. Patel Institute of Technology 

Changa, India 

Abstract— The use of genetic algorithms was originally 
motivated by the astonishing success of these concepts in their 
biological counterparts. Despite this deferent approach, we 
can merely be seen as optimization methods, which are used 
in a wide range of applications. “Genetic algorithms (GA) are 
good at taking large, potentially huge search spaces and 
navigating them, looking for optimal combinations of things, 
solutions you would find difficult to accomplish.” A genetic 
algorithm (GA) is an iterative search, optimization and 
adaptive machine learning technique premised on the 
principles of Natural selection. They are capable to finding 
solution to NP hard Problems. Genetic Algorithm based 
learning has promisingly showed results to a vast variety of 
function and problems. Travelling Salesman Problem, Tabu 
Search, and Transportation Problem is such classical 
problems for computation. This paper represents how to find 
optimal solution using various method of genetic algorithm. 
Advantages and disadvantages of this algorithm are reported 
and discussed.

Keywords-Crossover, Genetic  Algorithm, Mutation, Random 
Population

I. INTRODUCTION 

Genetic Algorithms are search, optimization and machine 
learning techniques based on the mechanics of Natural 
Selection and Natural Genetics. Genetic Algorithms (GA) are 
adaptive procedures of optimization and search that find 
solutions to problems by an evolutionary process inspired in 
the mechanisms of natural selection and genetic science. A 
genetic algorithm is a search method that functions 
analogously to an evolutionary process in a biological system. 
They are often used to find solutions to optimization problems 
[1,2]. GAs are Randomized search and optimization technique 
guided by the principle of natural genetic systems. Currently, 
these algorithms are being highly considered in those 
problems with complex solution spaces for those which we do 
not have good algorithms to solve them[3,4,5]. Genetic 
algorithms are algorithms that combine search algorithms with 
the genetics of nature. Past data and results are used to 
determine future results, in a 'survival of the fittest' kind of 
way. In a generation, the elements (the data represented as a 
string) that work the best move on to a new generation, with 
some mutations added in, just in case some important piece of 
information is lost through these changes. In a GA, a solution 
of our problem is called individual [6,7,8]. In essence, it 
consists of maintaining a population of a given number of 
individuals, each one of them characterized by a genetic code 
(genotype) that identifies it Univocally; thus an evolution of 
such population is simulated during the course of time, 
based on the apparition of new individuals resulting from 
crossovers, mutations and direct reproductions of the 
parents [9, 10]. An evaluation or objective function plays 
the role of the environment to distinguish in each 

generation that relatively good solutions reproduce, and 
that relatively bad solutions die, to be replaced by 
offspring of the good. Basically, we can say that a GA is 
based on the following components, for any type of 
application: a “genetic” representation of solutions to the 
problem; a way to create an initial population of solutions; 
an evaluation function to measure the fitness of any 
solution, and plays the role of the environment, in which 
the better solutions may have greater probability of 
survival; “genetic” operators that effect the composition of 
children during reproduction; value for the parameters that 
the algorithm uses to guide its evolution: population size, 
number of generations, crossing and mutation 
probabilities, etc[1].GA,NN and FL ,each of the 
technologies, in their own right and merit, has provided 
efficient solution to a wide range of problem [1-5]. 
Objective of the hybridization has been to overcome the 
weakness in one technology during its application, with the 
strengths of the others by appropriately integrate them. It 
investigating better methods of problem solving Hybrid 
systems has a tremendous potential to solve problem. 
Inappropriate use of technology can backfire. It has ability 
to locate the neighborhood of the optimal solution quicker 
than other conventional search strategies. 

II. APPLICATION OF GENETIC ALGORITHM

Genetic algorithms (GA) are good at taking large, 
potentially huge search spaces and navigating them, 
looking for optimal combinations of things, solutions you 
would find difficult to accomplish. A genetic algorithm 
(GA) is an iterative search, optimization and adaptive 
machine learning technique premised on the principles of 
Natural selection. They are capable to finding solution to 
NP hard. 

A.  Different type of Application of Genetic Algorithm  
As we are aware about some problems which take more 
time so solve. Such kind of problems can be solved using 
Genetic Algorithm e.g., Travelling Salesman Problem, Job 
shops Scheduling, Transportation.  
The traveling salesman problem is of particular note 
because it is the classic example of non-deterministic 
polynomial (NP) 
Complete problems that, so far, can only be solved in 
exponential time. Any problems can be classed as either 
solvable or unsolvable (such as the Halting Problem). The 
solvable problems they can be further subclasses as 
computationally complex or not. The Traveling Salesman 
Problem is the classic computationally complex problem. 
Imagine that you are a sales agent and you need to visit 

Gaurang Panchal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1824-1827

www.ijcsit.com 1824



potential clients in a certain number of cities using the 
shortest possible route. This problem can be solved using a 
computer. If there are n cities then the maximum number 
of possible itineraries between all the cities is (n – 1)! [5, 7, 
9].An algorithm can be created which simply examines all 
the possible routes and comes up with the shortest one. 
However the main catch is that the amount of time required 
for the algorithm grows at an enormous rate as the number 
of cities increases. If there are 25 cities then the algorithm 
must examine 24! itineraries.24! is approximately 
6.2•1023.Using a computer that can examine one million 
itineraries per second it would still take about 6.2•1023 / 
106 = 6.2•1017 seconds to solve the problem. This is over 
1.96•1010 years! 
The Transportation Problem involves shipping a single 
commodity from suppliers to consumers to satisfy demand 
via the minimum cost. Assume that the supply equals the 
demand. There are m suppliers and n consumers. The cost 
of shipping one unit from a single supplier to each 
consumer is known. The problem is to find the best 
allocation of the commodity at the suppliers so that the 
demand can be satisfied and the lowest costs are incurred 
[11, 12, 13]. A matrix representation can be encoded into 
each chromosome. The suppliers are listed vertically and 
the consumers are listed horizontally. Element xij holds the 
number of commodity shipped from supplier i to consumer 
j.  
During both the crossover and mutation operators, it is 
important to ensure that the amount of commodity being 
shipped remains constant since the amount of supply and 
Demand must remain equal. 
Mutation involves randomly selecting a smaller sub-matrix 
consisting of a random number of rows and columns 
(greater than one) and then redistributing the values. The 
values are redistributed in such a way so that the sum of all 
values still remains constant (i.e. the same as before the 
mutation operator). 
 Biomimicry or biomimetic is the development of 
technologies inspired by designs in nature. Since GAs is 
inspired by the mechanisms of biological evolution, it 
makes sense that they could be used in the process of 
invention as well. GAs rely primarily on something called 
implicit parallelism (like to like), using mutation and 
selection in secondary roles toward a design solution. 
GA programmers are working on applications that not only 
analyze the natural designs themselves for a return on how 
they work, but can also combine natural designs to create 
something entirely new that can have exciting applications. 
So the Genetic Algorithm is used widely for solving 
problems. 
 

III. OVERVIEW OF GENETIC ALGORITHM 
GAs was introduced as a computational analogy of 

adaptive systems. They are modeled loosely on the principles 
of the evolution via natural selection, employing a population 
of individuals that undergo selection in the presence of 
variation-inducing operators such as mutation and 
recombination (crossover). A fitness function is used to 
evaluate individuals, and reproductive success varies with 
fitness. 

 
The Algorithms 

a) Randomly generate an initial population 
M(0)  

b) Compute and save the fitness u(m) for each 
individual m in the current population M(t)  

c) Define selection probabilities p(m) for each 
individual m in M(t) so that p(m) is proportional to 
u(m)  

d) Generate M(t+1) by probabilistically selecting 
individuals from M(t) to produce offspring via 
genetic operators  

e) Repeat step 2 until satisfying solution is obtained.  
 
The paradigm of GAs described above is usually the one 
applied to solving most of the problems presented to GAs. 
Though it might not find the best solution More often than 
not, it would come up with a partially optimal solution. 
 

IV. GENETIC ALGORITHM 
 
A.  Parameter of Genetic Algorithm  

Genetic Algorithm (GA) depends on some parameters 
like population size, maximum generation number, 
probability of crossover, a goal condition and probability 
of mutation. In our present study, we have taken the values 
of those parameters as follows: pop size = 20, crossover 
rate = 0.8, mutation rate = 0.10, maximum generation 
=100. 
 
B.  Encoding 
 

Binary encoding is the most common, mainly because 
first works about GA used this type of encoding. In binary 
encoding every chromosome is a string of bits, 0 or 1. 
 

Table 1. Binary Encoding 
 

Chromosome A  101100101100101011100101 
 

Chromosome B  111111100000110000011111 
 
Binary encoding gives many possible chromosomes even 
with a small number of alleles. On the other hand, this 
encoding is often not natural for many problems and 
sometimes corrections must be made after crossover and/or 
mutation. 
 
Permutation encoding can be used in ordering problems, 
such as travelling salesman problem or task ordering 
problem. 
 
In Permutation encoding, every chromosome is a string of 
numbers, which represents number in a sequence. 
 

Table 2 Permutation Encoding 
Chromosome A : 1 5 3 2 6 4 7 9 8 

1. for the entire parent chromosome do  
1a. toss the coin for crossover 

1a.1 if random number below probability 
of crossover 

Chromosome B : 8 5 6 7 2 3 1 4 9 

Gaurang Panchal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1824-1827

www.ijcsit.com 1825



Example of chromosomes with permutation encoding 
Permutation encoding is only useful for ordering problems. 
Even for this problems for some types of crossover and 
mutation corrections must be made to leave the 
chromosome consistent (i.e. have real sequence in it). 
 
In Value encoding, every chromosome is a string of some 
values. Values can be anything connected to problem, form 
numbers, real numbers or chars to some complicated 
objects. 

Table 3 Value Encoding 
 
Chromosome A:  1.2324 5.3243 0.4556 2.3293 2.4545 
 
Chromosome B:  ABDJEIFJDHDIERJFDLDFLFEGT 
 
Chromosome C:  (back), (back), (right), (forward), (left) 
 
Value encoding is very good for some special problems. 
On the other hand, for this encoding is often necessary to 
develop some new crossover and mutation specific for the 
problem. 
 
C. Initialization 
We have taken binary encoding to generate initial random 
p population. Initial random population is depending upon 
the number of inputs. The initialization of any component 
of a chromosome can be done by random initialization, as 
the boundary of each component is not specified in the 
problem. 
 
D. Crossover 

Objective of this method is to apply the main operator 
of reproduction (i.e. Crossover) to the chromosomes of 
intermediate population. The name of the method signifies 
the work it has to do in program life cycle. Its basic work is 
to produce crossover between each paid of parent 
chromosomes. Normally we have higher crossover rate in 
application. 
This is analogous to the crossover process in biological 
reproduction. The most general method is single point 
cross over. This method takes parent chromosomes from 
intermediate population, selected by roulette wheel or any 
other selection technique, and then at a particular random 
point, these chromosomes are crossed. 
So, the region after the cross point in both chromosomes 
are interchanged. This crossover process is Probabilistic. 
The maximum probability of selection will decide, whether 
there should be crossover or not.  

1a.1 (a) generate random number for 
crossover point 

1a.1 (b) for bits after cross point 
1a.1 (b). (i) Interchange bits between 
parent chromosomes  

2. End  
One Point Crossover 

A crossover operator that randomly selects a crossover 
point within a chromosome then interchanges the two 
parent chromosomes at this point to produce two new 
offspring. Consider the following 2 parents which have 

been selected for crossover. The “|” symbol indicates the 
randomly chosen crossover-point. 
 
Parent1:11001|010  
Parent2:00100|111 
 
after interchanging the parent chromosomes at the 
crossover point, the following offspring are produced: 
 
Offspring1:11001|111  
Offspring2: 00100|010 
 
Two Point Crossover  

A crossover operator that randomly selects two 
crossover points within a chromosome then interchanges 
the two parent chromosomes between these points to 
produce two new offspring. 
 
Consider the following 2 parents which have been selected 
for crossover. The “|” symbols indicate the randomly 
chosen crossover-points. 
 
Parent1:110|010|10  
Parent2:001|001|11 
 
after interchanging the parent chromosomes between the 
crossover points, the following offspring are produced: 
 
Offspring1:110|001|10  
Offspring2: 001|010|11 
 
Uniform 
 

A crossover operator that decides (with some 
probability – known as the mixing ratio) which parent will 
contribute each of the gene values in the offspring 
chromosomes. This allows the parent chromosomes to be 
mixed at the gene level rather than the segment level (as 
with one and two point crossover). For some problems, 
this additional flexibility outweighs the disadvantage of 
destroying building blocks. 
Consider the following 2 parents which have been selected 
for crossover: 
 
Parent1:11001010  
Parent2:00100111 
 
If the mixing ratio is 0.5, approximately half of the genes 
in the offspring will come from parent 1 and the other half 
will come from parent 2. Below is a possible set of 
offspring after  
 
Uniform crossover: 
Objective of this method is to randomly change one of the 
bits the parent chromosome bit string after crossover. The 
name of the method signifies the work it has to do in 
program life cycle. Its basic work is to randomly change 
information encoded in the chromosome bit string 
structure. This is same as biological mutation, in which 
sometimes error is generated during the reproduction 

Gaurang Panchal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1824-1827

www.ijcsit.com 1826



process there are mainly two different mutation techniques, 
which can be implemented in this method as its basic 
algorithm. 
 
The Algorithm can be of the form: 
 
1. for the entire parent chromosome do 

1a. generate a random number for probability 
of mutation 

1a.1 if number within range 
1a.1 (a) generate random mutation point 
1a.1 (b) mutate the bit 

 
2. End 
 
The most general method is single bit mutation. In this 
method, the coin is tossed to get the probability of 
mutation. If it lies below the specified range, the parent 
chromosome's bit string is mutated at random point. 
Generally, the probability of mutation is kept very low. 
This is a very good operator, as it exploits Global 
Optimum. 
The great weakness of the conventional algorithm, in 
common with other heuristic approaches, there is no way 
to determine how far we are from the optimal solution. A 
genetic algorithm can be used to find a solution is much 
less time. Although it probably will not find the best 
solution, it can find a near perfect solution in less than a 
minute. We can conclude that the Genetic Algorithm is 
best search method as compared to the other conventional 
methods. 
 

ACKNOWLEDGMENT 
We avail this opportunity to acknowledge the academic 
interaction, exchange of views and participation with all 
those individual who have contributed toward this paper.  
 

REFERENCES 
[1] G. Panchal, A. Ganatra, Classification and Optimization to Evaluate 

the Fitness of an Algorithm. Lap Academic Publisher, Germany, 
2012. 

[2] A. Ganatra, G. Panchal,Y. Kosta, C. Gajjar, “Initial classification 
through back propagation in a neural network following 
optimization through GA to evaluate the fitness of an algorithm,” 
International Journal of Computer Science and Information 
Technology, vol. 3, no. 1, pp. 98–116, 2011. 

[3] G. Panchal, A. Ganatra, Optimization of Neural Network Parameter 
using Genetic Algorithm. Lap Academic Publisher, Germany, 2012. 

[4] G. Panchal and A. Ganatra, “Optimization of Neural Network 
Parameter using Genetic Algorithm,” 2008. 

[5] D. P. Y. K. G. Panchal, A. Ganatra, “Performance analysis of 
classification techniques using different parameters,” Springer 
Verlag-Germany (Springer-LNCS), vol. 6411, 2010. 

[6] G. Panchal, A. Ganatra, Y. Kosta, D. Panchal, “Searching most 
efficient neural network architecture using Akaikes information 
criterion (AIC),” International Journal of Computer Applications, 
vol. 1, no. 5, pp. 41–44, 2010. 

[7] G. Panchal, “Forecasting Employee Retention Probability using Back 
Propagation Neural Network Algorithm,” IEEE 2010 Second 
International Conference on Machine Learning and Computing 
(ICMLC), Bangalore, India, pp. 248–251, 2010. 

[8] G Panchal, A Ganatra, Y Kosta, D Panchal, “Behaviour analysis of 
multilayer perceptrons with multiple hidden neurons and hidden 
layers,” International Journal of Computer Theory and Engineering, 
vol. 3, no. 2, pp. 332–337, 2011. 

[9] G. Panchal, A. Ganatra, P. Shah, D. Panchal, “Determination of 
overlearning and over-fitting problem in back propagation neural 
network,” International Journal on Soft Computing, vol. 2, no. 2, 
pp. 40–51, 2011. 

[10] G. Panchal, Y. Kosta, A. Ganatra,D. Panchal, “Electrical Load 
Forecasting Using Genetic Algorithm Based Back Propagation 
Network,” in 1st International Conference on Data Management, 
IMT Ghaziabad. MacMillan Publication, 2009. 

[11] G. Panchal, A. Ganatra, P. Shah, Y. Kosta, “Unleashing Power of 
Artificial Intelligence for Network Intrusion Detection Problem,” 
International Journal of Engineering Science and Technology., vol. 
2, no. 10, 2010. 

[12] G. Panchal, A. Ganatra, D. Panchal, Y. Kosta, “Employee Retention 
Probability using Neural Network Based Back Propagation 
Algorithm,” IEEE Xplore, vol. 248, 2010. 

[13] G. Panchal, D. Panchal, “Solving NP hard problem using Genetic 
Algorithm,” in National Women Conference, CITC, Changa. 

 

Gaurang Panchal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1824-1827

www.ijcsit.com 1827




